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Abstract. As an increasing variety and complexity of environmental issues confront scientists and natural
resource managers, assembling the most relevant and informative data into accessible data systems becomes
critical to timely problem solving. Data interoperability is the key criterion for succeeding in that assembly,
and much informatics research is focused on data federation, or synthesis to produce interoperable data.
However, when candidate data come from numerous, diverse, and high-value legacy data sources, the issue
of data variety or heterogeneity can be a significant impediment to interoperability. Research in informatics,
computer science and philosophy has frequently focused on resolving data heterogeneity with automation,
but subject matter expertise still plays a large role. In particular, human expertise is a large component in the
development of tools such as data dictionaries, crosswalks, and ontologies. Such representations may not
always match from one data system to another, presenting potentially inconsistent results even with the same
data. Here, we use a long-term data set on management actions designed to improve stream habitat for
endangered salmon in the Pacific Northwest, to illustrate how different representations can change the under-
lying information content in the data system. We pass the same data set comprised of 49,619 records through
three ontologies, each developed to address a rational management need, and show that the inferences drawn
from the data can change with choice of data representation or ontology. One striking example shows that the
use of one ontology would suggest water quality improvement projects are the rarest and most expensive
restoration actions undertaken, while another will suggest these actions to be the most common and least
expensive type of management actions. The discrepancy relates to the origins of the data dictionaries them-
selves, with one designed to catalog management actions and the other focused on ecological processes. Thus,
we argue that in data federation efforts humans are “in the loop” rationally, in the form of the ontologies they
have chosen, and diminishing the human component in favor of automation carries risks. Consequently, data
federation exercises should be accompanied by validations in order to evaluate and manage those risks.
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INTRODUCTION

Addressing real-world natural resource man-
agement challenges necessitates matching the

most salient information to the needs of decision
makers. Unfortunately, the most salient data are
often dispersed among distributed data holders,
making it difficult to get the best data in front of
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the right people (Katz et al. 2007, Volk et al.
2014, Williams and Labou 2017). This broad dis-
tribution of data may not be a problem, but
rather may develop rationally, and for multiple
reasons. For example, many managed natural
resources span broad geographic areas that fall
under the domains of numerous agencies, each
with different needs and practices (Bayer 2006).
Further, new science and management questions
often emerge on a larger geographic or concep-
tual scale than when individual natural resource
monitoring programs were funded, designed
and executed (Carpenter et al. 2009). In many of
these cases, data were a means for an individual
or organization to answer a particular question,
rather than a research product to be protected,
curated, or distributed. After collection, these
data become part of the dark data, largely
unknown and inaccessible outside of the organi-
zation where they originated (Heidorn 2008). In
response, many groups and individuals increas-
ingly see the need to combine disparate data into
a synthetic, relevant data corpus (Romanello
et al. 2005, Jones et al. 2006, Reichman et al.
2011).

Not only are these data often highly dis-
tributed, but consequent to their independent
development, they often lack standardized
methods and formats (Heidorn 2008, Brunt and
Michener 2009, Vassiliadis and Simitsis 2009,
Kolb et al. 2013, Theodorou et al. 2014), creating
a substantial challenge in simply discovering,
let alone combining, the vast pool of data that
result from largely public investments in natural
resources science. Creating a single, functional
data set from disparate source data has been ter-
med data (con)federation, synthesis, or integra-
tion (Hull 1997, Haas et al. 2002, Romanello
et al. 2005, Reichman et al. 2011), and in the
domain of corporate or commercial data, some
data federation workflows have been character-
ized as extraction-transformation-loading, or
ETL (Shu et al. 1977, Vassiliadis and Simitsis
2009, Theodorou et al. 2014). In an ETL work-
flow, data extracted from source data are cleaned
or otherwise transformed into a common format,
screened for compliance with a uniform data
standard, and loaded into a single data ware-
house (Vassiliadis and Simitsis 2009).

Data heterogeneity forms a significant chal-
lenge to successful data federation and can exist

at several levels of organization within data sys-
tems (Qian 1993, Hammer and McLeod 1999,
Vassiliadis and Simitsis 2009). Data heterogene-
ity is often confronted as a characteristic of the
data representation, such as differences in units
or confusion arising from common terms mean-
ing different things (=homonyms) or multiple
terms referring to the same thing (=synonyms;
Vassiliadis and Simitsis 2009). Consequently,
data heterogeneity is often addressed as a data
quality issue where heterogeneity is an undesir-
able property (Dong and Naumann 2009). How-
ever, differences among metadata may or may
not overlay real semantic or ontological differ-
ences among the entities collecting, curating, and
contributing data to a synthetic corpus, and this
is often particularly challenging when data are
represented as strings, text, and narrative (Vassil-
iadis and Simitsis 2009). While there are numer-
ous approaches to addressing this issue, it is still
not clear how the methods for resolving differ-
ences among multiple, (sometimes highly)
heterogeneous metadata catalogs may preserve
or alter the relationships among data elements,
the underlying informational content in the data,
and ultimately the interpretation of the data
during analysis.
The key technical development to empower

large-scale data federation projects is tools to
resolve semantic differences among disparate
source data. These include data dictionaries,
crosswalks, and ontologies. Historically, data
federation in ecology was conducted by individ-
ual researchers often exercising judgment based
on domain expertise, limiting the scope and rate
of data federation. It is anticipated now that the
greater scientific community is on the cusp of a
transition where automation, leveraging machine
learning and algorithmic approaches, will
increase the velocity and accessibility of interop-
erable, federated data (Qian 1993, Hammer and
McLeod 1999, Haas et al. 2002).
These emerging tools for semantic integration

come with characteristics and features that can
impact their behavior and utility. So as we
deploy crosswalks and ontologies to federate
ecological data, we need to be circumspect in
their use just as we would with other emerging
technologies. Here, we present an examination of
this issue using a case study to demonstrate how
the information content within a single, large

 ❖ www.esajournals.org 2 November 2019 ❖ Volume 10(11) ❖ Article e02920

SPECIAL FEATURE: EMERGING TECHNOLOGIES IN ECOLOGY KATZ ET AL.



natural resource management data set responds
when crosswalked using different ontologies. We
start with a short clarification of what we mean
by data dictionaries, crosswalks, and ontologies.
We then present an illustrative case study of a
data system curating over 40,000 records col-
lected over the last 20 yr of habitat restoration
projects in the Pacific Northwest. The case study
amounts to passing the same base data through
three distinct ontologies to show how each alters
the information content of the data. We conclude
with a discussion of the impact of this behavior,
and the implications for changes in information
content resulting from the federation process.
Importantly, identifying these behaviors is not
intended to be a critique of these tools, as these
behaviors are properties that are anticipated
based on semantics and representation theory,
not dependent on data quality per se, and are
therefore generic (Hull 1997, Kuhn 2003, Obrst
2003). Rather, we think it a useful discussion to
explore the behavior of these rapidly developing
tools, and their philosophical underpinnings, so
that we can better evaluate their robustness and
ultimately maximize their utility.

DATA DICTIONARIES, ONTOLOGIES, AND
CROSSWALK TRANSLATORS

Data dictionaries constitute a form of metadata
that describes the informational content of fields
within a data set, and so defines the fields in a
database to allow classification of the data into
groups with like properties. High performing dic-
tionaries provide users with a clear discrimination
of similar observations within a data set, and sort-
ing of observations that are unlike. More practi-
cally, data dictionaries classify data into a finite
number of well-defined fields despite variability
in the original source data. Variability can take
many forms. For example, spatial location for a
management action can exist in numerous for-
mats such as latitude/longitude and township-
range-section. Standardized definitions allow for
rapid manipulation, comparison, and communi-
cation of data content and are thus a key prerequi-
site for data interoperability.

When we apply analysis to data sets, those
data sets are a representation of the world that
the data collection was intended to describe. In
the case of habitat restoration projects, each

action on the ground is represented in a data set
by a set of variables that include project type,
location, duration, and extent of habitat restored,
which is clearly capturing many but not all facets
of that action. Thus, such representations are
inherently less complex than real life and are
thus abstractions of it. If functioning well, the
data set design captures enough of the real world
to address the original motivating questions.
With restoration projects for example, an effec-
tive data system would need to capture enough
of the restoration process to test hypotheses
about habitat impacts, ecosystem responses, dis-
tribution of restoration resources, or other rele-
vant questions. If they are to be effective,
representations of the real world are also
expressed as ontologies, which capture not just
the definitions of the fields, in the form of a data
dictionary perhaps, but also their conceptual
connections or internal logic in a sufficiently
explicit manner for the information to be shar-
able among users (Gruber 1993, Uschold and
Gruninger 2004). The conceptual connections can
take the form of explicit relationships between
data elements, such as is-a or has-dimensions-of
(Madin et al. 2007) but can also be manifest sim-
ply in the topology of connections or hierarchies
within a data system (Gruber 1993). In practice,
data system development has sometimes pro-
ceeded without being conscious of the ontology,
but once the language and topology are speci-
fied, the ontology will manifest, along with the
consequences of diversity among different
ontologies.
Like any representation, the process of data-

base design or ontology development can be
biased by the perspective, needs, and back-
ground of the designer of the data system (Gru-
ber 1993). When multiple, independent but
similar efforts develop data systems, differences
among these efforts can produce a different map-
ping of the world based on distinct data dic-
tionaries. If our ambition is subsequently to
combine data from different sources, we must at
least resolve differences among source data dic-
tionaries, including potential underlying concep-
tual differences, with a translation or crosswalk.
A crosswalk is described as a set of transfor-

mations that map the content of a source meta-
data standard onto analogous elements of a
target metadata standard (Pierre and LaPlant
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2000). The implications of crosswalk data map-
ping include the need to map both semantic and
structural aspects of the data sets and the chal-
lenge of topological differences. Topological dif-
ferences could include one data set being
hierarchical, but the other not (Pierre and
LaPlant 2000), which is an important issue for
crosswalks, and in fact manifests in our test case.

Crosswalks function as translators, and so are
subject to the limitations common to other trans-
lation mechanisms. There is certain to be loss of
functional information in the process of translat-
ing that information into a representation, or
from one representation to another. This under-
determination of information by data has been
referred to as a class of problems in philosophy
called the indeterminacy of translation (Quine
1970). Although somewhat contentious in the
philosophy literature (Schick 1973, Wright 2017),
it is a relatively common experience in informat-
ics and statistics.

CASE STUDY: HABITAT RESTORATION DATA
FROM THE PACIFIC NORTHWEST PASSED
THROUGH MULTIPLE ONTOLOGIES

In the Pacific Northwest, the listing of five
Pacific Salmon species as threatened and endan-
gered across much of Washington, Oregon, and
Idaho motivated large investments in habitat
management that have at times neared 400 Mil-
lion U.S. Federal dollars per annum in the
Columbia River Basin alone (G.A.O. 2002). In
particular, improvements in fish habitat via
restoration, and the anticipated improvement in
fish survival, have been widely applied as a prin-
cipal management tactic to compensate for the
increased mortalities that led to salmon declines
and ESA listing (Kareiva et al. 2000). Initially,
regional investments in restoration actions were
not documented with a targeted or coordinated
implementation monitoring program, making
evaluations of project effectiveness impossible
(G.A.O. 2002; Katz et al. 2007). There were, how-
ever, numerous and disparate data sets of
restoration actions curated by project sponsors
and funding agents. Over time, these diverse
agents have documented their projects for a vari-
ety of reasons including justification of expendi-
tures by funders, management or regulatory
requirements, and research needs. Each agency

or organization covered a subset of the total spa-
tial scale of endangered salmon management,
and applying all the data to regional salmon
management required federation of all the data
sets.
In response, our group embarked on an ongo-

ing synthesis of the available project-level data
on restoration in the Pacific Northwest (Katz
et al. 2007). We aimed to census all habitat
restoration projects that could impact salmon
habitat in the states of Washington, Oregon,
Idaho, and Montana. At its initiation, we hoped
that the resulting data system could be used to
evaluate the impact of habitat restoration on
improvements in endangered fish survival. The
resulting Pacific Northwest Salmon Habitat Pro-
ject (PNSHP) database is described in detail else-
where (Katz et al. 2007, Barnas and Katz 2010,
Hamm 2012, Barnas et al. 2015), and while that
project informed restoration practice, it also
revealed some important insights into the
broader challenges of data federation.
In assembling the PNSHP database, a census

of existing habitat restoration project data con-
sisted of the following steps:

1. Obtain all available data from as many
sources as possible in formats that ranged
from relational electronic databases to paper
project files;

2. Manually read the data to determine the
attributes of each data set of interest and
how they vary from source to source;

3. Resolve the common information encoded
in each of the data systems based on associ-
ated source metadata and consultation with
subject area experts, and then resolve the
diversity of project data into a common
descriptive metadata standard;

4. Develop crosswalks between each source
data attribute definitions and a common
data dictionary for the final resolved data
system.

This approach resulted in the importation of
26 different data sets with varying formats held
by private, local, state, tribal, and federal entities
into one format and machine-readable database,
the PNSHP database. Two of the 26 data sets
were compiled by individuals contacting local
and municipal land agents to obtain 72 records
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for individual projects, similar to a door-to-door
canvas. These agents collected data from diverse
individuals, but with a common data dictionary
to record project records resulting in a total of 96
unique sources, but among them there were only
25 independent data systems to be reconciled.

Based on the available data, the final PNSHP
data structure of the output data system includes
fields for project identifier, sponsor, contact info,
location, project type, timing, cost, goals, and
existence of monitoring. As described in Katz
et al. (2007), at the time there was no single stan-
dard format for any of these attributes requiring
some degree of reconciliation for all of them.
However, we found the greatest degree of
heterogeneity in the description of project type,
and for this case study, we will focus on project
type to evaluate the effect of different data dic-
tionaries on the mapping of information onto a
data structure in our analysis.

The PNSHP database defined the restoration
actions in a hierarchical scheme. In all levels in
this hierarchy, projects are defined by the actions
taken by the project sponsor rather than other
possible bases for definition; this basis estab-
lishes the internal logic of this ontology. First,
project subtype was defined based on the action
taken at the worksite (e.g., culvert installation,
culvert replacement, fish by-pass installation).
Second, project subtypes were aggregated into
project types (e.g., barrier removals). This hierar-
chical scheme emerged from steps 2 and 3 in the
process outline above; the raw data from the 26
possible data holders were inconsistent in
describing both type and subtype of project, but
given that a project type could be deduced from
its subtype, this scheme allowed the bottom-up
capture of the greatest number of project records.
In addition, it also captured the greatest diversity
of language used by the project sponsors them-
selves. From this process, we were also able to
generate a single data dictionary for project type
as described in Katz et al. (2007) and in
Appendix S1: Table S1. Resolving the project
records from each data contributor into that sin-
gle data dictionary also produced a series of
crosswalks for each of the 26 unique source data
designs that translated the attribute descriptors
to the output data set.

At the same time that we were assembling
PNSHP data (mid-2000s), two other, parallel

projects were underway with similar goals, but
different organic questions, and internal logics.
PNSHP collaborated with both of these other
restoration compilations, necessitating semantic
differences among the three projects be resolved,
and crosswalks created. The crosswalks we cre-
ated between the data dictionaries of these three
databases allow us now to evaluate the impact of
differences among the ontologies on the map-
ping of information onto data.
The National River Restoration Science Syn-

thesis (NRRSS) was a data synthesis project
through the National Center for Ecological Anal-
ysis and Synthesis, which sought to evaluate the
state of practice of stream restoration by compil-
ing restoration data for eight regions (or nodes)
across the Unites States. The motivation was to
identify successful demonstrations of different
types of stream restoration and in so doing high-
light the reasons for their success. National River
Restoration Science Synthesis grouped similar
projects into intents based on the ecological pro-
cess goals of the restoration action distinct from
the action itself, for example, floodplain recon-
nection (Bernhardt et al. 2005). National River
Restoration Science Synthesis did not include a
sub-level in their intents and thus was not hierar-
chical. The NRRSS intents included four cate-
gories that existed in other parts of the country
but were either not represented in the Pacific
Northwest or they did not impact salmon habi-
tat. These included instream species manage-
ment, out of stream land acquisitions, non-water
quality related storm water projects, and nar-
rowly defined aesthetic, recreational, or educa-
tional actions. Consequently, the NRRSS data
system had 13 intents, but only nine were repre-
sented in this crosswalk exercise. PNSHP data
were integrated into the NRRSS national-scale
database and at that time constituted 77.9% of
the national total of project records (Bernhardt
et al. 2005).
At the same time, the Pacific Coast Salmon

Recovery Fund (PCSRF) began capturing data on
PCSRF-funded management actions related to
salmon in the western United States. The PCSRF
was established by congress in 2000 as a means
by which NOAA Fisheries Service would pro-
vide grants to States and Tribes to assist State,
Tribal, and local salmon conservation and recov-
ery efforts. Originally, the formation of PCSRF
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was requested by the governors of the States of
Washington, Oregon, California, and Alaska in
response to Endangered Species Act (ESA) list-
ings of West Coast salmon and steelhead popula-
tions. The desire to assemble a comprehensive
database of project records came later in order to
support annual reports to the U.S. Congress to
justify spending of PCSRF funds. The context of
accountability in the PCSRF process resulted in
projects being categorized in part by where they
occur on the landscape (Estuarine, Wetland,
Upland, Instream, etc.) with jurisdictions and
constituent interest in mind. Some additional
project types, such as fish exclusion screens, were
characterized by the action taken rather than the
location. However, actions like fish screens are
also distinct in being tied to specific land uses
where water withdrawals are occurring (Barnas
et al. 2015), and so there is at least some implicit
location information that structured the project
type designations in PCSRF.

In all three cases, the project included the
defined vocabulary in the context of an underly-
ing conceptualization of the project goals—for
example, what the action is, what it is intended
to achieve ecologically, where it is performed,
respectively (summarized in Table 1). As such,
each of these representations needs to be seen

not just as a dictionary of terms or vocabulary,
but also as an ontology (Gruber 1993, Chan-
drasekaran et al. 1999).
To evaluate the impact of different ontologies

on the information content of data systems, we
compare the patterns in data that result when the
same raw data (i.e., project records as reported in
Katz et al. 2007) are represented in three differ-
ent data systems that rely on their own ontology.
For this case study, we focus on two patterns in
the data. We first ask how the distribution of pro-
ject types changes when different ontologies are
used, and in particular whether our original
hypothesis about cost determining the distribu-
tion of restoration actions is altered by the choice
of ontology. Second, we ask whether the correla-
tion between the distribution of restoration pro-
jects and ecological need varies based on the
choice of ontology. The source data for project
records and cost are from the PNSHP database
that is publically available (https://www.weba
pps.nwfsc.noaa.gov/pnshp).
Ecological need is expressed as ecological con-

cerns that are defined in Hamm (2012), where a
mapping was developed between restoration
action and the ecological concern it can address,
currently in use by NOAA fisheries for habitat
assessments for salmon recovery. The data on

Table 1. Summary of characteristics of the contributing data systems to the ontology comparison.

Data system PNSHP NRRSS PCSRF

Name Pacific Northwest Salmon
Habitat Project data base

National River Restoration
Science Synthesis

Pacific Coast Salmon
Recovery Fund

Contact https://www.nwfsc.noaa.gov/
research/divisions/cb/mathb
io/salmon_habitat.cfm

https://www.nceas.ucsb.edu/
riverrestoration/

https://www.webapps.nwf
sc.noaa.gov/pcsrf

Funding Source U.S. Federal Government:
National Oceanographic and
Atmospheric Administration

Academic/NGO partnership:
National Center for
Ecological Analysis and
Synthesis and American
Rivers

U.S. Federal Government:
National Oceanographic
and Atmospheric
Administration

Context for developing
data system

Supporting effectiveness
monitoring for restoration

Assess patterns of restoration
practice and explore
indicators of restoration
success

Assessment of
accountability for funds
applied to restoration
actions.

Basis for classifying project
types (i.e., internal logic)

Action taken at the worksite Ecological process affected by
restoration

Location of action on
landscape

Hierarchical typology of
restoration types

Yes No No

Number of project types
present

11 9 9

Total captured 45,073 32,025 (plus “ULUM” &
“WL”=45,073)

35,056 (plus ULUM &
F = 45,073)

Notes: ULUM, upland land use management. Total number of records is 49,619.
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ecological concerns were amassed in an inven-
tory of ESA recovery plans from across Washing-
ton, Oregon, and Idaho and are documented in
Barnas et al. (2015). In reality, this final step
amounts to three separate ontologies of restora-
tion actions being correlated with ecological con-
cern these actions are believed to address. This
applied example illustrates how crosswalked
data can inform management decisions about
what type of restoration to pursue, and also how
the crosswalk itself can influence the outcome.
For all questions, correlations among distribu-
tions are compared with Kendall’s tau (s) rank
correlations (Sokal and Rohlf 1969) and calcu-
lated in the R environment for statistical comput-
ing (Ver. 3.4.4, R. Core Team 2013).

RESULTS

The total number of restoration project records
in the federated data set was 49,619. We were
able to translate most, but not all project records
across the three data systems. As reported previ-
ously (Katz et al. 2007), 4546 project records did
not provide enough information to identify pro-
ject type (labeled other in the PNSHP data sys-
tem) and failed to be mapped onto a project type
in any of these data systems. In addition, due to
differences in the types of restoration captured
and excluded by each of the databases, some
project records were not crosswalked into all of
the data systems compared here. The net project
records successfully crosswalked to each of the
three data systems are summarized in Table 1.
As mentioned above, the PNSHP database uses
eleven types, with the breakdown into subtypes
creating 86 type–subtype combinations (detailed
in Appendix S1: Table S1), while NRRSS and
PCSRF each categorize projects as nine specific
intents or types (Appendix S1: Tables S2, S3). In
addition, the NRRSS data system did not have a
category for upland land use management
(ULUM in Table 1) and some wetland-based
(WL) restoration projects. These amounted to
13,047 project records not captured by the
NRRSS system. Similarly, the PCSRF data system
did not recognize forestry management and
some upland land use management (F and
ULUM) types that were not clearly related to sal-
mon recovery funding, totaling 10,025. In the
case of the NRRSS system, these projects were

not deemed river restoration per se; in the case of
PCSRF, large land use projects (distinct from
small projects, such as fencing or livestock man-
agement) were not commonly funded under the
program and tracking them was likewise not a
priority. Aside from the indeterminate project
records, designated other above, all records were
definable, and the difference in number of
records between the data systems represents
intentioned decisions about what is included and
excluded in each data system, rather than ability
to define the project records on the basis of the
available information.
Numerous project records had multiple project

types in PNSHP (6643, 23%) and were resolved
into more than one project type category. In these
cases, a single project record had data for multi-
ple worksite locations and often different actions
at each location (e.g., when a project was both
Restore Riparian Function and Sediment Reduc-
tion types, it would be counted as a 1 in both
type categories). Since cost was only available at
the project level, in the cases of a one-to-many
relationship between project record and project
subtype and/or location existed, the full project
cost was attributed to all project type–subtype
combinations in that record.
Passing the same project data to each of these

three different data dictionaries resulted in three
distinct distributions of projects based on type
(Fig. 1). Among the commonalities across sys-
tems, riparian restoration projects (e.g., Restore
Riparian Function, Riparian Habitat Projects,
Riparian Management) were the most common
project type under all three sets of definitions
and yielded similar counts of 5989–6106 and
median costs of $9,600–$9,921 (US$ are reported
and are undeflated). Upland Management pro-
jects were among the three most common types
under both the PNSHP and the PCSRF data defi-
nitions; however, the number of projects and
costs varied by over 11% (PNSHP count 5914,
median cost $6,092, PCSRF count 6583, median
cost $7,810). Although the net counts were higher
when crosswalked to PCSRF definitions, this dif-
ference reflects the larger number of project
records being reclassified both into and out of
the Upland Management category. Numerous
sediment reduction projects in PNSHP were clas-
sified as Upland Management in PCSRF, but this
did not entirely balance a much larger number of
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Fig. 1. Histograms of number of restoration projects (bars) and median cost (profile plot) for each category of
project. In each plot, the raw data and the dependent variables are the same, but the different data records are
assigned to a project category based on the ontology in use by that data synthesis project. Therefore, the labels
for the categories (i.e., the X-axis) differ somewhat in language; the exact mapping is described in the supplement
(Appendix S1: Tables S2, S3). (A) Distribution of projects and costs using the Pacific Northwest Salmon Habitat
Project Tracking Database ontology. Abbreviations of restoration types are Div_Scr, Fish Diversion Screens;
Wat_Qul, Water Quality Improvement; Inst_Fl, Instream Flow; Chn_Com, Restore Instream Complexity via

 ❖ www.esajournals.org 8 November 2019 ❖ Volume 10(11) ❖ Article e02920

SPECIAL FEATURE: EMERGING TECHNOLOGIES IN ECOLOGY KATZ ET AL.



Upland Management projects that were reclassi-
fied to a more specific subtype in PNSHP.

Overall, we found distinct variability in the
rank of projects by type across the data systems.
In one of the biggest contrasts, numerous sedi-
ment reduction and water quality improvement
projects in the PNSHP were captured under the
Water Quality Management intent under the
NRRSS definitions. Thus, NRRSS Water Quality
Management projects totaled 7382 records, mak-
ing it the most common intent, with a median
cost of $10,000. In PCSRF and PNSHP, Water
Quality Projects and Water Quality Improvement
Projects totaled only 799 projects but were the
most expensive by far at $236,709.

In our original analysis of PNHP data, we
found a strong negative correlation between pro-
ject count and project cost (Katz et al. 2007). We
find this pattern repeated when PNSHP is cross-
walked into the NRRSS and PCSRF ontologies.
Regardless of which ontology, less expensive
projects were more commonly performed,
although the strengths of the relationships differ.
Kendall’s rank order correlations between project
abundance and cost were stronger for the
PNSHP data (s = �0.73, P = 0.002, with nutrient
additions excluded, see Katz et al. 2007; and
s = �0.69, P = 0.005, PCSRF; and s = �0.6,
P = 0.03, NRRSS).

To ask how well the distribution of projects
matched the distribution of environmental
needs, we performed rank order correlations of
frequency of expressed ecological concerns and
frequency of projects that address that concern.
This metric of match between need and action is
crude and contains a heavy bias toward correctly
matching action with need as any relevant

project is scored as addressing a need regardless
of how small the quantitative investments in that
project type may be (Barnas et al. 2015). Thus,
the point here is not that restoration actions are
or are not executed strategically, but rather how
the ontology alters the information content in the
data.
We find a wide variation in the match between

ecological concern and distribution of restora-
tion, and a wide variation in how that match is
reflected when the data are expressed in the
three different data systems. A histogram of eco-
logical concerns across the extent of salmon
recovery reveals that concerns with habitat con-
nectivity and complexity (peripheral and transi-
tional habitats and channel structure and form)
are the most commonly expressed ecological con-
cerns but these needs are less commonly
addressed with restoration (Fig. 2). The most
common restoration actions are designed to con-
trol water quality and sediment issues, even
though these needs are expressed with interme-
diate frequency. Similarly, nutrient limitation
projects have been prioritized more so than their
ecological concern. Conversely, peripheral and
transitional habitats, channel structure and form,
and habitat quality receive restoration at a lower
rate than the frequency with which they are iden-
tified as a concern.
The numerical correlations between concern

and actions do differ among data dictionaries.
Kendall’s rank order correlations between rela-
tive frequency of projects type and frequency
that the concern was stated in recovery plans
were s = 0.44 (P = 0.12) for the PNSHP data,
and s = 0.08 (P = 0.82) and s = 0.37 (P = 0.18)
for the PCSRF and NRRSS data dictionaries,

Channel Complexity; Inst_St, Restore Instream Complexity via Instream Structure; Bar_Rem, Barrier Removal;
Upl_Man, Upland Management; Res_Rip, Restore Riparian Function; Sed_Red, Sediment Reduction; and Other
is undefinable (see text). (B) Distribution of projects and costs using the National River Restoration Science Syn-
thesis. Abbreviations of restoration types are as follows: Fld_Rec, Floodplain Reconnection; Dam_Rem, Dam
Removal; Chn_Rec, Channel Reconnection; Bnk_Stb, Bank Stabilization; Flo_Mod, Flow Modification; Inst_Hb,
Instream Habitat Improvement; Fis_Pas, Fish Passage; Rip_Man, Riparian Management; and Wat_Qul, Water
Quality Management. (C) Distribution of projects and costs using the Pacific Coastal Salmon Recovery Fund
ontology. Abbreviations of restoration types are as follows: Est_Pro, Estuary Projects; Wet_Pro, Wetlands Pro-
jects; Div_Scr, Fish Diversion Screens; Wat_Qul, Water Quality Projects; Inst_Fl, Instream Flow Projects; Inst_Hb,
Instream Flow Projects; Fis_Pas, Fish Passage Improvement Projects; Rip_Man, Riparian Management Projects;
and Upl_Hab, Upland Habitat Projects.

(Fig. 1. continued)
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respectively. While there was variety in the corre-
lations, with the PNSHP and NRRSS data sys-
tems being most similar, none were statistically
significant.

DISCUSSION

Our results confirm that representing the same
data with three different ontologies alters the
information conveyed by that representation,
and thus a researcher’s likely interpretation. Pro-
ject type distributions varied, and their ability to
express relationships was dependent on the
choice of ontology. In general, the PNSHP and
PCSRF distributions were most similar in terms
of rank order of project frequency (Fig. 1), but
the PNSHP and NRRSS representations were
more similar in expressing underlying processes

(Fig. 2). These results suggest that recognition of
uncertainty introduced by the design of the data
system needs to be a consideration in any data
federation effort, but in evaluating this effect it is
useful to know how big the effect is and what
some of the potential consequences of that effect
are.
While we have reported statistical differences

in various correlation estimates, it is not obvious
if these differences have real-world significance,
nor is it clear that differences in correlation coeffi-
cient here would be reflected more generally in
other types of data. In this case study however,
the effect of using different data dictionaries to
represent the same data has the potential to
change qualitative answers about restoration pri-
orities. For example, were one to switch from
using the PNSHP to the NRRSS data definitions

Fig. 2. Comparative histogram illustrating the relationship between the choice of ontology and inferences on
how the distribution of projects matches the environmental concerns expressed for the Columbia River Basin.
This figure is equivalent to Fig. 3A in Barnas et al. (2015), but with the addition of the distribution of habitat
restoration actions when defined in the alternative ontologies. The black bars are the relative frequency that the
labeled ecological concern is expressed in the sub-basin plans across the Columbia River Basin. The white, gray,
and dark gray bars are the distribution of projects when defined by the Pacific Northwest Salmon Habitat Project
(PNSHP), Pacific Coast Salmon Recovery Fund (PCSRF), and National River Restoration Science Synthesis
(NRRSS) ontologies, respectively.

 ❖ www.esajournals.org 10 November 2019 ❖ Volume 10(11) ❖ Article e02920

SPECIAL FEATURE: EMERGING TECHNOLOGIES IN ECOLOGY KATZ ET AL.



to represent the same data, water quality
improvement projects would go from one of the
rarest and most expensive restoration actions
undertaken to the most common and least
expensive type of management actions. The rea-
son for this discrepancy lies in the motivations
and logic for the different data synthesis projects
rather than data quality. The NRRSS project was
designed to address ecological process, and so,
restoration actions that altered sediment flow or
water temperature resulting in improved water
condition were classified as water quality
projects. In general, these types of water quality
projects were numerous and cheap. Conversely,
the PNSHP data definition captured the physical
actions taken by the restoration project sponsor.
So, water quality projects, such as toxic waste or
mine tailing cleanups, are fewer in number and
happen to be very expensive.

While the reasons behind these findings may
be rational and intentioned, the consequences
have high stakes. In particular, the ontology cho-
sen has implications for evaluation of implemen-
tation and monitoring of habitat restoration in
the Pacific Northwest. In a national synthesis of
habitat restoration, more than three quarters of
all actions in the United States were in the Pacific
Northwest (Bernhardt et al. 2005). In the Colum-
bia River Basin alone, habitat management
expenditures have been estimated at $300–
400 million per year in federal dollars (G.A.O.
2002), and more recent estimates indicate that
this investment has continued in the years since
and may exceed half a billion dollars per year
when surrounding areas are included (S. L. Katz
et al., unpublished manuscript). These costs do not
include the ongoing litigation surrounding the
regulatory and management context in the
Columbia River Basin, within which environ-
mental mitigation via restoration is a major com-
ponent (Kareiva et al. 2000, G.A.O. 2002). In
sum, the habitat restoration enterprise is an
important economic engine in the region, and
these data systems are the mechanism for main-
taining accountability of, and compliance moni-
toring for the public money spent on the actions.
It is important, therefore, that the broader com-
munity understand the sources of uncertainty
that exist within these federated data systems. If
a party had an interest in highlighting one type
of habitat problem, water quality in the example

above perhaps, it is important for all parties to
understand the role of the data structures in bias-
ing the representation of that information one
way or the other.
Is there a basis for choosing one ontology over

another, or identifying which one is best? As
mentioned above, in assembling a data system,
the intent is for the simplified representation (i.e.,
the data) to include enough of the available and
relevant information from the real world to cap-
ture processes of interest and test models of those
processes. The more accurate our representa-
tions, the more we will capture the signal of the
underlying process with less noise from alterna-
tive processes. It is seductive to suggest that the
best ontology is the one that has the highest sig-
nal-to-noise ratio. When we asked how restora-
tion type frequency related to cost, the strongest
signal was demonstrated by the PNSHP ontol-
ogy, indicated by the highest magnitude correla-
tion coefficient. This might lead us to suggest the
PNSHP ontology is the best one. As defined
however, this results in part from the internal
logic of this ontology—to look at what action
was completed. It is possible that if we had
posed questions focused on constituencies, the
PCSRF ontology may have had a better signal-to-
noise ratio. It is also important to recognize that
the developers of all of these data systems report
that the choice of ontology was satisfactory for
their needs (Bernhardt et al. 2007). Thus, we
have a reasoned basis for suggesting that signal-
to-noise ratio is a method for choosing one ontol-
ogy among alternatives, but at the same time we
must remember that because the ontology is also
a model of nature (Guarino 1995), its perfor-
mance can be conditioned on the context for the
original data system design.

How much must humans be involved in data
federation?
The challenge to interoperability produced by

heterogeneity among candidate federated data
systems is a widely recognized problem (Litwin
et al. 1990, Qian 1993, Hammer and McLeod
1999, Haas et al. 2002, Jones et al. 2006, Madin
et al. 2007). Among these studies, differences
exist even in how heterogeneity itself is charac-
terized. For example, Qian (1993) dichotomizes
semantic mismatch, arising from contextual dif-
ferences among data management entities, from
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representational mismatch, arising from different
mappings of data language onto the information
represented in a data system. Hammer and
McLeod (1999) distinguish domain mismatch,
which is similar to Qian’s semantic mismatch,
from schema mismatch, which can arise from
topological differences among candidate data
systems. In the ETL literature, the hierarchies of
heterogeneity can be even more complex (Vassil-
iadis and Simitsis 2009, Theodorou et al. 2014).
In addition, heterogeneity among source data
can exist by degree rather than being the same or
different. For example, in describing an IBM data
synthesis product DB2 for example, Haas et al.
(2002) characterize a gradient from tightly cou-
pled data (sensu Litwin et al. 1990) with little
heterogeneity and easy ingestion into federated
systems, to efforts to combine data sets of
unknown heterogeneity that may require custom
applications, or wrappers, to resolve. Similarly,
Madin et al. (2007), in describing an approach to
using the open-source ontology development
product OBOE, organize data with a framework
—based on classes of data and the relationships
among them—that mitigates semantic heterogene-
ity in the data. However, residual heterogeneity
in these framework ontologies that hinders
further interoperability may still require resolu-
tion with the use of semantic annotation pro-
vided by input from domain expertise (Madin
et al. 2007).

Across the larger discussion of data federation
exists an underlying expectation that there is
some degree of common core semantic agree-
ment among heterogeneous systems. That com-
mon core could be topological, some natural
language overlap, or an explicit relational data-
base, but the larger this common core, the less
input from users or domain expertise is antici-
pated. As the scientific enterprise shifts further
toward web or cloud basis, the pressure for data
federation processes to be more automated and
faster will also increase. This pressure includes
both calls for the propagation of a single, or small
number of similar data standards on the one
hand (Katz et al. 2007, Madin et al. 2008, Hors-
burgh et al. 2011, Tarboton et al. 2011), and
increasing automation in data discovery, inges-
tion, and synthesis on the other (Rahm and Bern-
stein 2001, Doan et al. 2004, Noy 2004).
Environmental management in the Pacific

Northwest is also on this trajectory to higher
velocity data. Data standards would be most use-
ful however, if those standards can be estab-
lished and propagated prior to data collection.
Unfortunately, in the case of habitat restoration,
similar to other natural resource management
problems, we are confronted by a 20-year legacy
of diverse data collected without standards (Katz
et al. 2007), and the point where we can deploy
automation is still some distance in the future
(Doan et al. 2004).
Currently, we are operating in a space where

some degree of domain expertise is still required
to resolve overlapping data dictionaries or
ontologies. Apart from the potentially large
effort and expense accessing subject matter
expertise in the federation enterprise (Haas et al.
2002), we have shown here that there are poten-
tially important impacts on the inferences drawn
with that data. Specifically, we would argue that
subject matter expertise is indispensable in evalu-
ating interpretations based on federated data,
and that significant consideration of this effect is
appropriate when evaluating choice of ontology
where legacy data are being combined. In our
case, we are able to screen for these differences
with estimates of correlations and signal to noise
in test-bed inferences. Although the specific tests
will vary in other applications, some characteri-
zation of data system behavior seems prudent
(Hull 1997). Important epistemic differences
emerge from the context, perspectives, and
research questions of the parties collecting the
original data leading us to recommend that some
validation accompany the reporting of data fed-
eration projects in the future.
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